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Abstract
It is shown that basic quantum commutation relations are equivalent to a
geometric phase. We propose two interferometric arrangements that are able
to measure this quantum geometric phase via interference in phase space.

PACS numbers: 03.65.Vf, 03.65.Ta, 03.65.Ca, 42.50.−p

1. Introduction

In very few years geometric phases have gained a pre-eminent status in physics [1]. Originally
discovered in the framework of the quantum theory, the question of the possible quantum
origin of some geometric phases has been well discussed [2]. However, the role they can play
in the foundations of the quantum theory [3, 4] has received much less attention. It can be
shown that basic commutation relations sustaining quantum mechanics are fully equivalent
to a geometric phase arising after cyclic evolutions in phase space [4, 5]. Here we show that
currently operative experimental arrangements can serve to detect and measure this quantum
geometric phase via interference in phase space.

The equivalence between geometric phases and quantum physics might be regarded as the
fundamentalsof a novel formulationof the quantum theory. Given the relevance that geometric
arguments have in natural science, this new formulation might eventually become comparable
in importance to historic formulations. In particular, it might reveal novel correspondences
between classical and quantum physics.

2. Quantum mechanics as a geometric phase

We focus on systems describable by an unbounded continuous degree of freedom represented
by two canonically conjugate Cartesian variablesq andp. The generalization to an arbitrary
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Figure 1. Closed pathγ in phase space made of the composition of
successive translations of value dα. The ellipses represent the quantum
state of the system at three moments of its evolution alongγ .

number of degrees of freedom is straightforward. In the quantum domain these variables
become operators ˆq andp̂ satisfying the fundamental commutation relation

[q̂, p̂] = ih̄. (2.1)

This lack of commutation of complementary variables is one of the cornerstones sustaining
the quantum world and is directly responsible for basic quantum phenomena such as
complementarity, uncertainty relations and so on. Suitable examples accessible to experiment
in the quantum regime are the one-dimensional motion of a trapped ion (whereq andp represent
position and linear momentum, respectively) and a single mode of the electromagnetic field
(whereq andp are field quadratures).

A key ingredient in the context of geometric phases is cyclic evolution. In this work we
will consider the evolution along closed loopsγ in phase space such as the one represented in
figure 1. In our case the phase space is a plane withq andp variables as rectangular coordinates.
We can picture the evolution of the system via the representation of quantum states by quasi-
probability distributions on phase space, such as the Wigner function [6]. Under the cyclic
evolutions considered in this work it can be seen that the quasi-distribution evolves rigidly
without experiencing any deformation or rotation. Therefore, all points describe the same
trajectoryγ at different locations.

In order to disclose the geometric phase we have to work in the standard formulation of
quantum mechanics in Hilbert space. In such a case, phase-space translations are represented
by the unitary displacement operators [6]

D(α) = ei(pq̂−qp̂)/h̄ (2.2)

where the complex quantitiyα = q + ip parametrizes the displacement. We denote by|ψ〉
the (arbitrary) initial state of the system. During the evolution the system will be successively
transformed into the displaced states|ψ(α)〉 ∝ D(α)|ψ〉 up to a phase factor. The first
objective of this paper is to provide a simple explicit calculation of such a phase factor and its
relation with the commutation relation (2.1).

We assume that the closed loopγ is an N-sided closed polygon with sides dαj , j =
1,2, . . . , N, such that

N∑
j=1

dαj = 0. (2.3)

An arbitrary curve can be suitably approached in the limitN → ∞. The total transformation
Dγ associated withγ is naturally given by

Dγ = D(dαN) · · ·D(dα1). (2.4)

After any cyclic evolution the system returns to the initial state but acquires a phase in the
state vector. We can compute such a phase noting that the commutation relation (2.1) implies
the composition law [6]

D(dα)D(α) = eidβD(α + dα) (2.5)
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Figure 2. Rectangular closed path in phase space.

where

dβ = 1

2h̄
(q dp − p dq) . (2.6)

This means that when computing the total transformation (2.4), each elementary displacement
dα adds a differential phase dβ. For a closed path this gives a total transformation proportional
to the identity

Dγ = eiβ (2.7)

whereβ is given by

β = 1

2h̄

∮
γ

(q dp − p dq) = 1

h̄
S (2.8)

andS is the oriented area enclosed byγ .
The phaseβ depends only on the area of the circuit and is therefore a geometric phase.

It does not depend on the form of the loop nor on the speed at which the transformation is
executed. It is also worth pointing out that this phase appears irrespective of the state of the
system and takes exactly the same value for each of them. In fact this is the geometric phase
associated with the Heisenberg–Weyl group for one canonical pair of variables [4, 5].

This demonstrates that the very foundations of quantum physics imply the existence of
a geometric phase. Next we show that the converse is also true: the quantum commutation
relation (2.1) can be derived from this geometric phase. To show this we consider the simple
rectangular circuit schematized in figure 2. We can naturally assume that every state is cyclic
so that the corresponding transformation must be proportional to the identity, and, because of
normalization of the state vectors, the constant of proportionality must have unit modulus

Dγ = e−ipq̂/h̄eiqp̂/h̄eipq̂/h̄e−iqp̂/h̄ = eiβ (2.9)

where the phaseβ depends on the area of the circuit. From equation (2.9), the commutation
relation (2.1) can be derived in the limitsq → 0, p → 0 since in such a case both sides of the
equality (2.9) can be approximated in the forms

Dγ 	 1 +
qp

h̄2 [q̂, p̂] 	 1 + iβ (2.10)

and this implies that

[q̂, p̂] = ih̄2 lim
q,p→0

β

qp
. (2.11)

Therefore, the quantum commutation relation (2.1) and the geometric phase (2.8) can be
regarded as equivalent facts. In particular, [ ˆq, p̂] 
= 0 if and only ifβ 
= 0. It must be stressed
that to deriveβ the Hilbert space structure underlying quantum mechanics is necessary from
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the start. Nevertheless, this does not unbalance the equivalence since the Hilbert space is also
a prerequisite for imposing commutation relations between the linear operators ˆq andp̂.

Since this geometric phase is intimately connected with the foundations of the quantum
theory, we can expect that it becomes unobservable when approaching the classical limit. For
classical systems the typical areasS of phase-space loops are very large in comparison with
h̄. Sinceβ = S/h̄, in the classical limit small relative variations ofS lead to large phase
changes (short wavelength limit). Any real measurement unavoidably involves some kind
of coarse-grained averages that will wash out the rapidly oscillating terms arising from the
geometric phase. As expected, we conclude thatβ is not observable in the classical domain.
We can recall that a very similar reasoning applies to the classical limit of the path-integral
formulation of quantum mechanics.

We may consider the possibility of generalizing these results to other group structures,
such as theSU(2) group. In principle, it seems that it should always be possible to link the
commutation relations satisfied by the infinitesimal generators to the corresponding geometric
phase by using infinitesimal loops. For example, a direct relation between theSU(2) geometric
phase and the angular momentum commutation relations can be found in reference [7].
However, it is expected that such links will not be as simple as the one discussed in this
work. This is because for the phase-space displacements, all the states are cyclic experiencing
the same geometric phase and therefore the right-hand sides of equations (2.1), (2.7) and (2.9)
are simply constants instead of operators. Furthermore, for the case analysed in this paper, the
existence of a geometric phase is fully equivalent to the quantum nature of the system. We think
that there is no natural extension of this result to arbitrary groups. For example, for theSU(2)
group the appearance of a geometric phase (the Pancharatnam phase) can be fully explained
in the framework of classical physics, specifically in classical optical polarization [8, 9].

Finally, we can note that, in principle, this quantum phaseβ differs from the quantum
phase concept arising when translating to the quantum domain classical phase variables such
asϕ = arg(q + ip) [10]. Such a translation implies determination of how phases and phase
shifts must be described and measured in the quantum domain. In this contextβ becomes
a non-random phase shift that eventually should be disclosed by a suitable phase-detection
scheme. The actual physical origin ofβ (classical or quantum, geometrical or dynamical) is
not relevant [11]. We can also exclude a direct relationship between these two phase concepts
in the case of theSU(2) group, where the relevant phase variableϕ is the phase difference
(i.e. the azimuthal angle of the Poincaré or Bloch sphere). For example, it can be seen that
differentSU(2) coherent states on the equator of the Poincaré or Bloch sphere (or evenSU(2)
phase states [12]) can be in phase in the geometrical sense (they are connected by a single
geodesic so that the solid angle they subtend vanishes) [9, 13], while they clearly represent
different values of the phase difference [12]. In this context we can also mention the phase
operator for two-state systems introduced in reference [14] that is suitably adapted to describe
geometric phases.

3. Observation of the quantum geometric phase via interference in phase space

In this section we show that the quantum geometric phaseβ in equation (2.8) has observable
consequences that can be directly verified experimentally. We demonstrate that this is possible
in spite of the fact that all states experience the same geometric phase. First, we show in general
terms how this observation can be achieved, and then we particularize to two possible practical
implementations of the general scheme.
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3.1. General approach

The natural framework where phases manifest themselves is interference. In our case we have
to consider interferometric schemes in which the interfering paths are two different trajectories
in phase space rather than in real space. To this end, the initial state of the system must be
split into two components. The idea is to apply a different phase-space transformation to
each component. One of them will be a cyclic transformationDγ . The other component
experiences no transformation (identity), so it acts as a reference for the phase acquired by the
other one. The final state of the system after recombining the two paths will depend onβ.

The splitting of the initial state requires the use of auxiliary degrees of freedom. The
simplest choice is to describe these additional variables by using just two orthogonal states
|±〉 which can represent spin components or the internal electronic state of an atom, etc. With
the help of these variables we can consider the initial split state

|�〉 = 1√
2
(|−〉 + |+〉) |ψ〉 (3.1)

that experiences the unitary transformation

U = |−〉〈−| +Dγ |+〉〈+| (3.2)

leading to the output state

U |�〉 = 1√
2
(|−〉 + eiβ |+〉)|ψ〉. (3.3)

The phase shiftβ is entirely contained in the auxiliary degrees of freedom. In order to detect
β, we consider a measurement devised to determine the probability that the auxiliary degrees
of freedom are in the state

|v〉 = 1√
2
(|−〉 + |+〉) . (3.4)

This occurs with probability

P = 1

2
(1 + cosβ) . (3.5)

This dependence of the final probability onβ is the purely quantum interference phenomenon
we were looking for. It is worth stressing that the probabilityP is completely independent
of the system state|ψ〉. Moreover, the same result is obtained if the system is initially in an
arbitrary mixed state.

In summary the auxiliary states|±〉 label two different paths in phase space. One of
the paths experiences the transformationDγ while the other acts as a reference. The final
measurement recombines these two paths leading to the interference pattern in equation (3.5).

In what follows, we propose two experimental implementations of this interferometric
scheme which are within the reach of present technology. In fact, both arrangements have
been carried out successfully for different purposes.

3.2. Ion traps

First, we consider that the system variablesq andp are the position and linear momentum,
respectively, of the one-dimensional motion of a trapped ion. The auxiliary states|±〉 are two
of the internal electronic levels of the ion. The selective displacement (3.2) can be carried
out by applying pairs of off-resonant laser beams which drive two-photon-stimulated Raman
transitions [15]. The final measurement (3.4) can be performed by detecting the internal state
(|+〉 or |−〉) using field ionization detectors after applying a resonant laser pulse transforming
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|v〉 into |−〉 (π/2 pulse). The probability of occupation of|−〉 can then be measured by
driving the ion with a laser beam on resonance with a strong transition between|−〉 and a level
different from|+〉. In case fluorescence is observed, the ion is in the state|−〉, otherwise the
ion is in the state|+〉 [16].

All these steps have been actually carried out experimentally. According to reported
data, it is possible to produce phase-space displacements withq andp up to 4× 10−8 m and
4 × 10−26 kg m s−1, respectively [15]. In a rectangular circuit, such as the one represented in
figure 2, these values imply thatβ can be varied between−16 and 16, more than enough to
suitably observe the quantum interference (3.5).

3.3. Cavity fields

Next, we examine a practical observation of this geometric phase in the area of quantum
optics. As in the preceding example, we will closely follow the arrangements already
carried out successfully [17]. In this case the system described by theq and p variables
is an electromagnetic field mode in the microwave region contained in a high-Q cavity. A
microwave source connected to the cavity can suitably displace the field state inside the cavity.
The auxiliary degrees of freedom|±〉 are two internal electronic levels of a Rydberg atom
that will cross the cavity. The atomic transitions and the cavity frequency are detuned enough
so that there is no photon exchange. In such a case, the atom-field interaction produces a
phase shift of the cavity field which depends on the internal atomic state. This action can be
described by the unitary operator

V (φ) = eiφaa†|+〉〈+| + e−iφa†a |−〉〈−| (3.6)

wherea is the complex amplitude operator for the field modea = (q̂ + ip̂)/
√

2, q̂ andp̂ being
adimensional quadrature operators with [ ˆq, p̂] = i, andφ is the one-photon phase shift which
depends on the interaction time, the detuning and the Rabi frequency of the coupling between
the atom and the cavity field.

The desired interference in phase space can be obtained as follows. Before the atom enters
the cavity the initial field state|ψ〉 is displaced byD(α1). The atom is prepared in a 50%
coherent superposition of|±〉, as in equation (3.1), and then it crosses the cavity interacting
with the field. At a given instant during the atom–field interaction, the field experiences
another sudden displacementD(α2). Afterwards the interaction continues. Once the atom
leaves the cavity the initial state|�〉 is transformed into|� ′〉,

|� ′〉 = V (φ2)D(α2)V (φ1)D(α1)|�〉 (3.7)

whereφ1 andφ2 are, respectively, the one-photon phase shifts associated with the atom–field
interaction before and after the second displacementD(α2).

The output state can be expressed as

|� ′〉 = W
1√
2

(
e−iφaa† |ψ〉|−〉 +Dγ eiφa†a |ψ〉|+〉

)
(3.8)

whereW = eiφD(α2e−iφ2)D(α1e−iφ),

Dγ = D
(−α1e−iφ)D (−α2e−iφ2

)
D

(
α2eiφ2

)
D

(
α1eiφ) (3.9)

andφ = φ1 + φ2. The product of translations (3.9) is cyclic provided that

α1 sin(φ1 + φ2) + α2 sinφ2 = 0. (3.10)

As in the preceding example, the geometric phase shift can be observed by measuring the
population of the atomic levels|±〉 after applying a resonantπ/2 pulse transforming|v〉 into
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|−〉. We can appreciate that, in the general case,the field states associated with|±〉 in equation
(3.8) are not the same. This would affect the visibility of the interference replacing equation
(3.5) by

P = 1

2
[1 +V cos(β + δ)] (3.11)

where

Veiδ = eiφ〈ψ|ei2φa†a|ψ〉. (3.12)

Nevertheless, we can still have maximum visibilityV = 1 for anyφ provided that the initial
field state|ψ〉 is invariant under rotations in phase space. This is observed in the thermal states
or the vacuum state.

For a proper choice ofφ1, φ2, α1 andα2, the trajectory in phase space can be rectangular,
such as the one illustrated in figure 2 (for example ifα2 = ±α1, φ1 =−π/2, φ2 = π/4). If
the initial field state is a vacuum state it can be seen that the value of the geometric phase is of
the order of the mean number of photons introduced in the cavity by the two displacements.
Therefore a meaningful range of variation forβ can be obtained even with a very low number
of photons in the cavity field.

4. Conclusions

We have shown that there is a geometric phase fully equivalent to the quantum commutation
relation between canonical operators. Such a quantum geometric phase can be experimentally
observed with currently operating arrangements when used as interferometers in phase space.
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